1st Edition

Modeling and Simulation of Everyday Things

ISBN 9781439869376
Published March 19, 2018 by CRC Press
354 Pages 71 B/W Illustrations

USD $75.95

Prices & shipping based on shipping country


Book Description

How can computer modeling and simulation tools be used to understand and analyze common situations and everyday problems? Readers will find here an easy-to-follow, enjoyable introduction for anyone even with little background training. Examples are incorporated throughout to stimulate interest and engage the reader.

Build the necessary skillsets with operating systems, editing, languages, commands, and visualization.

Obtain hands-on examples from sports, accidents, and disease to problems of heat transfer, fluid flow, waves, and groundwater flow.

Includes discussion of parallel computing and graphics processing units.

This introductory, practical guide is suitable for students at any level up to professionals looking to use modeling and simulation to help solve basic to more advanced problems.

Michael W. Roth, PhD, serves as Dean of the School of STEM and Business at Hawkeye Community College in Waterloo, Iowa. He was most recently Chair for three years at Northern Kentucky University's Department of Physics, Geology and Engineering Technology, and holds several awards for teaching excellence.

Table of Contents


1. Building Your Basic Toolbox
1.1 Introduction: Could a Computer Simulation ever be useful? Why do Them?
1.2 How much should a simulation be trusted?
1.3 Who first used them and why they came about
1.4 What’s the state of the art? What limits have been pushed?
1.5 The Simulation’s New Clothes
1.6 Computer modeling is a very interdisciplinary field.
1.7 What types of models are most important for everyday things?
1.8 When do you build your own tools and when are black boxes the best?

2. Getting to Know the Neighborhood
2.1 Overview
2.2 The UNIX Operating System
2.3 The Vi Editor
2.4 A working introduction to C++: basic coding
2.5 How do I choose a good algorithm?
2.6 Compiling, linking and executing simple programs
2.7 Examples of what can be done wrong: compile errors, execution errors and bugs
2.8 Doing it Without a Supercomputer: computing on Macs and PC’s.
2.9 Mapping your C++ knowledge to other computing languages
2.10 Critically thinking about your work: Relevance, applicability and limits
2.11 Your work in the broader context of the scientific and technological community

3. Visualizing Your Work and Representing Your Best Story
3.1 Introductory Thoughts
3.2 Visualizing two-dimensional data sets
3.3 Visualizing three-dimensional data sets
3.4 Making pictures and movies
3.5 A sample visualization program
3.6 Four- and higher – dimensional visualization: yes, it really works!
3.7 Cross-sensory visualization: what if you can’t see or hear?
3.8 Limiting cases and effective (reduced) systems
3.9 Visualizing calculus part I: Derivatives
3.10 Visualizing calculus part II: Integrals
3.11 Critically thinking about how best to visualize your results
3.12 Examples of visualization and presentation of data
3. 13. Visualizing various stages of cancer cell growth


4. In the News: The Fun and the Dangerous
4.1 Modeling the flight of objects through fluids: using science to play a better game
4.3 A Physics Nerd, A Cool Guy and a Pool Table
4.4 Understanding Things of Danger in Hindsight and Foresight 4.5 Diseases

5. The Dances of Guitars, Bridges, and Atoms
5.1 Introductory Thoughts
5.2 A finite difference simulation of a guitar string
5.3 A little mathematical overhead that provides a wealth of understanding
5.4 Living in 2D: Sheets and Drums
5.5 Sometimes you win and sometimes you lose: Advantages and disadvantages of each method
5.6 When resonance isn’t your friend: The Tacoma Narrows Bridge
5.7 Matter waves: Schrödinger’s Equation

6. Going with the Flow
6.1. Introductory thoughts
6.2 How fluids move around boundaries
6.3 A sample program that calculates wind velocity in Cartesian coordinates
6.4 Snow in July
6.5 A sample program that simulates a snowstorm
6.6 How fluids move through porous media
6.7 The Heat Equation


7. One of the Most Versatile Simulation Tools Around
7.1 Introduction
7.2 Theory behind the Material Point Method
7.3. A Material Point Method Program
7.4 Applications of the Material Point Method Simulation

8. Simulations that Explore Atoms and Planets
8.1 Introduction to Molecular Dynamics computer simulations
8.2 Molecular Dynamics simulation of a system of particles
8.3 Monte Carlo Simulations
8.4 How do we choose MD or MC?
8.5. The Dynamics of Planetary and Galactic Systems
8.6. Advanced planetary dynamics methods designed to save time: go climb a tree


9. Parallel Computing, Scripting, and GPUs
9.1Introductory thoughts
9.2 Decompositions: Breaking up is easy to do
9.3 Example Parallel Programs
9.4 Compiling and executing MPI codes
9.5 UNIX Scripting
9.6 Graphical Processing Units (GPU’s)

View More



Michael W. Roth, PhD, serves as Dean of the School of STEM and Business at Hawkeye Community College in Waterloo, Iowa. Prior to that he has held faculty positions at a variety of community colleges and universities in Colorado, New Mexico, Texas, Iowa and was most recently Chair for three years at Northern Kentucky University's Department of Physics, Geology and Engineering Technology. He has a passion for teaching and holds several awards for teaching excellence across all levels of undergraduate study, and has participated in course and program development and assessment. He has involved a large and diverse group of students in his computational physics modeling and simulation–based research program, and has published numerous articles and presented at conferences with them in the fields of condensed matter surface physics, bullet impact, groundwater flow, snow remediation, solar system formation, and planetary impact. He is a collector of antique science books and laboratory equipment.


"Mike Roth refers in his book to the dispersed pieces of information that everyone gains via internet in everyday life and completes them with professional knowledge on computer modeling, providing an introduction to the techniques of computer simulations, showing their usefulness as well as their limits. His lively narrative style makes his book accessible for everyone interested in science."
— Prof Lucyna Firlej, Laboratoire Charles Coulomb, Montpellier, France

"a playful and exciting introduction to a complex subject of continuous and discrete-event modeling and simulation. With a multitude of real-word examples and hands-on experiences, the book is very accessible to students."
—Prof. Masha Sosonkina, Old Dominion University